Part Number Hot Search : 
STU16NB5 TK71250M PMN42XPE MAX3349E 0LZBC01 L2101 ENA663R3 AN3276
Product Description
Full Text Search
 

To Download MF1S5009DUD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MF1S5009
Mainstream contactless smart card IC for fast and easy solution development
Rev. 3 -- 27 July 2010 189131 Product data sheet PUBLIC
1. General description
NXP Semiconductors has developed the MIFARE MF1S5009 to be used in a contactless smart card according to ISO/IEC 14443 Type A. The MF1S5009 features a double size UID for early adopters among existing MIFARE Classic systems which are planning to migrate from the currently used single size UID to double size UID. The MIFARE MF1S5009 IC is used in applications like public transport ticketing where major cities have adopted MIFARE as their e-ticketing solution of choice.
1.1 Key applications * * * *
Public transportation Access control Event ticketing Gaming and identity
1.2 Anticollision
An intelligent anticollision function allows to operate more than one card in the field simultaneously. The anticollision algorithm selects each card individually and ensures that the execution of a transaction with a selected card is performed correctly without data corruption resulting from other cards in the field.
energy MIFARE CARD PCD data
001aam199
Fig 1.
MIFARE card reader
1.3 Simple integration and user convenience
The MF1S5009 is designed for simple integration and user convenience which could allow complete ticketing transactions to be handled in less than 100 ms. Thus, the MF1S5009 card user is not forced to stop at the reader leading to a high throughput at gates and reduced boarding times onto busses.
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
1.4 Security * Unique identifier for each device using double size UID (7 byte UID) * Mutual three pass authentication (ISO/IEC 9798-2) * Individual set of two keys per sector (per application) to support multi-application with
key hierarchy
1.5 Delivery options * Bumped die on wafer * MOA4 contactless module
2. Features and benefits
2.1 MIFARE RF Interface (ISO/IEC 14443 A)
Contactless transmission of data and supply energy (no battery needed) Operating distance up to 100 mm depending on antenna geometry and reader configuration Operating frequency of 13.56 MHz Data transfer of 106 kbit/s Data integrity of 16-bit CRC, parity, bit coding, bit counting Anticollision Typical ticketing transaction time of < 100 ms (including backup management)
2.2 EEPROM
1 kB, organized in 16 sectors with 4 blocks of 16 bytes each (one block consists of 16 byte) User definable access conditions for each memory block Data retention time of 10 years Write endurance 100000 cycles
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
2 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
3. Applications
Public transportation Access management Electronic toll collection Car parking School and campus cards Employee cards Internet cafes Loyalty
4. Ordering information
Table 1. Ordering information Package Commerci al Name MF1S5009DUD FFC Name Description Version Type number
8 inch wafer, 120 m thickness, on film frame carrier, electronic fail die marking according to SECS-II format) plastic leadless module carrier package; 35 mm wide tape SOT500-2
MF1S5009DA4
MOA4
PLLMC
5. Block diagram
RF INTERFACE
UART ISO/IEC 14443A
CRYPTO1
POWER ON RESET VOLTAGE REGULATOR LOGIC UNIT CRC
CLOCK INPUT FILTER
RESET GENERATOR
EEPROM
001aal732
Fig 2.
Block diagram
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
3 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
6. Pinning information
6.1 Smart card contactless module
LA
top view
LB
001aam200
Fig 3. Table 2.
Contact assignments for SOT500-2 (MOA4) Bonding pad assignments to smart card contactless module MF1S5009DA4 Description Antenna coil connection LA Antenna coil connection LB Symbol LA LB
Contactless interface module Antenna contacts LA LB
7. Mechanical specification
Table 3. Wafer diameter maximum diameter after foil expansion thickness flatness Potential Good Dies per Wafer (PGDW) Wafer backside material treatment roughness Chip dimensions step size x = 1231 m y = 1280 m Si 200 mm typical (8 inches) 210 mm 120 m 15 m not applicable Specifications
18482
ground and stress relieve
Ra max = 0.2 m Rt max = 2 m
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
4 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
Specifications typical = 15 m minimum = 5 m
Table 3.
gap between chips[1] Passivation type material thickness Au bump (substrate connected to VSS) material hardness shear strength height height uniformity
sandwich structure nitride 1.75 m
> 99.9 % pure Au
35 to 80 HV 0.005 >70 MPa 18 m within a die = 2 m within a wafer = 3 m wafer to wafer = 4 m
flatness size size variation under bump metallization
[1] [2]
minimum = 1.5 m LA, LB = 69 m x 69 m
P1;TP2;VSS[2] = 58 m x 58 m
5 m sputtered TiW
The gap between chips may vary due to changing foil expansion. Pads P1, TP2 and VSS are disconnected when wafer is sawn.
7.1 Fail die identification
Electronic wafer mapping covers the electrical test results and additionally the results of mechanical/visual inspection. No ink dots are applied.
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
5 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
8. Chip orientation and bond pad locations
x (m) Bump size LA, LB VSS, TP1, TP2 Chip Step 69 58 1231(1)
y (m) 69 58 1280(1)
typ. 15.0(1) min. 5.0 typ. 15.0(1) min. 5.0
typ. 36.4(1)(2) min. 26.4 typ. 36.4(1)(2) min. 26.4
TP1
LA
52.3(2) 239.2(2) 1280.0(1) 1071.0(2) 1070.0(2)
51.3(2)
TP2
VSS
LB
52.9(2)
Y 368.7(2) X 556.6(2) 807.7(2) 1231.0(1) Dimensions in m
001aam201
(1) The air gap may vary due to varying foil expansion (2) Measured from outer sealring edge (see detail) All dimensions in m
Fig 4. Chip orientation and bond pad locations
MF1S5009 All information provided in this document is subject to legal disclaimers. (c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
6 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
9. Functional description
9.1 Block description
The MF1S5009 chip consists of a 1 kB EEPROM, RF interface and Digital Control Unit. Energy and data are transferred via an antenna consisting of a coil with a small number of turns which is directly connected to the MF1S5009. No further external components are necessary. Refer to the document Ref. 1 for details on antenna design.
* RF interface:
- Modulator/demodulator - Rectifier - Clock regenerator - Power-On Reset (POR) - Voltage regulator
* Anticollision: Multiple cards in the field may be selected and managed in sequence * Authentication: Preceding any memory operation the authentication procedure
ensures that access to a block is only possible via the two keys specified for each block
* Control and Arithmetic Logic Unit: Values are stored in a special redundant format and
can be incremented and decremented
* EEPROM interface * Crypto unit: The CRYPTO1 stream cipher of the MF1S5009 is used for authentication
and encryption of data exchange.
* EEPROM: 1 kB is organized in 16 sectors with 4 blocks each. A block contains
16 bytes. The last block of each sector is called "trailer", which contains two secret keys and programmable access conditions for each block in this sector.
9.2 Communication principle
The commands are initiated by the reader and controlled by the Digital Control Unit of the MF1S5009 according to the access conditions valid for the corresponding sector.
9.2.1 Request standard / all
After Power On Reset (POR) the card answers to a request REQA or wakeup WUPA command with the answer to request code (see Section 10.4, ATQA according to ISO/IEC 14443A).
9.2.2 Anticollision loop
In the anticollision loop the identifier of a card is read. If there are several cards in the operating field of the reader, they can be distinguished by their identifier and one can be selected (select card) for further transactions. The unselected cards return to the idle state and wait for a new request command. The anticollision is done with two cascade levels as defined in ISO/IEC 14443-3, see also Ref. 6.
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
7 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
9.2.3 Select card
With the select card command the reader selects one individual card for authentication and memory related operations. The card returns the Select Acknowledge (SAK) code which determines the type of the selected card, see Section 10.4. For further details refer to the document Ref. 2, the handling of double size UIDs in MIFARE Classic is described in Ref. 6.
9.2.4 Three pass authentication
After selection of a card the reader specifies the memory location of the following memory access and uses the corresponding key for the three pass authentication procedure. After a successful authentication all memory operations are encrypted.
POR
Transaction Sequence
Typical Transaction Time
REQUEST STANDARD
REQUEST ALL
ANTICOLLISION LOOP GET IDENTIFIER
Identification and Selection Procedure ~3 ms +~3 ms without collision for each collision
SELECT CARD
3 PASS AUTHENTICATION ON SPECIFIC SECTOR
Authentication Procedure ~3 ms
READ BLOCK
WRITE BLOCK
DECREMENT
INCREMENT
RESTORE
Memory Operations HALT ~2.5 ms ~6.0 ms ~2.5 ms ~4.5 ms read block write block de-/increment transfer
001aam202
TRANSFER
Fig 5.
Three pass authentication
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
8 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
9.2.5 Memory operations
After authentication any of the following operations may be performed:
* Read block * Write block * Decrement: Decrements the contents of a block and stores the result in a temporary
internal data-register
* Increment: Increments the contents of a block and stores the result in the
data-register
* Restore: Moves the contents of a block into the data-register * Transfer: Writes the contents of the temporary internal data-register to a value block 9.3 Data integrity
Following mechanisms are implemented in the contactless communication link between reader and card to ensure very reliable data transmission:
* * * * *
16 bits CRC per block Parity bits for each byte Bit count checking Bit coding to distinguish between "1", "0" and "no information" Channel monitoring (protocol sequence and bit stream analysis)
9.4 Three pass authentication sequence
1. The reader specifies the sector to be accessed and chooses key A or B. 2. The card reads the secret key and the access conditions from the sector trailer. Then the card sends a random number as the challenge to the reader (pass one). 3. The reader calculates the response using the secret key and additional input. The response, together with a random challenge from the reader, is then transmitted to the card (pass two). 4. The card verifies the response of the reader by comparing it with its own challenge and then it calculates the response to the challenge and transmits it (pass three). 5. The reader verifies the response of the card by comparing it to its own challenge. After transmission of the first random challenge the communication between card and reader is encrypted.
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
9 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
9.5 RF interface
The RF-interface is according to the standard for contactless smart cards ISO/IEC 14443 A. The carrier field from the reader is always present (with short pauses when transmitting), because it is used for the power supply of the card. For both directions of data communication there is only one start bit at the beginning of each frame. Each byte is transmitted with a parity bit (odd parity) at the end. The LSB of the byte with the lowest address of the selected block is transmitted first. The maximum frame length is 163 bits (16 data bytes + 2 CRC bytes = 16 * 9 + 2 * 9 + 1 start bit).
9.6 Memory organization
The 1024 x 8 bit EEPROM memory is organized in 16 sectors with 4 blocks of 16 bytes each. In the erased state the EEPROM cells are read as a logical "0", in the written state as a logical "1".
Byte Number within a Block Sector 15 Block 3 2 1 0 14 3 2 1 0 Key A Access Bits Key B 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Key B Description Sector Trailer 15 Data Data Data Sector Trailer 14 Data Data Data
Key A
Access Bits
: : :
: : :
1
3 2 1 0
Key A
Access Bits
Key B
Sector Trailer 1 Data Data Data
0
3 2 1 0
Key A
Access Bits
Key B
Sector Trailer 0 Data Data Manufacturer Block
001aam203
Fig 6.
MF1S5009
Memory organization
All information provided in this document is subject to legal disclaimers. (c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
10 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
9.6.1 Manufacturer block
This is the first data block (block 0) of the first sector (sector 0). It contains the IC manufacturer data. This block is programmed and write protected in the production test.
Block 0/Sector 0 Byte 0 1 2 3 UID 4 5 6 7 8 9 10 11 12 13 14 15
Manufacturer Data
001aam204
Fig 7.
Manufacturer block
9.6.2 Data blocks
All sectors contain 3 blocks of 16 bytes for storing data (Sector 0 contains only two data blocks and the read-only manufacturer block). The data blocks can be configured by the access bits as
* read/write blocks for e.g. contactless access control or * value blocks for e.g. electronic purse applications, where additional commands like
increment and decrement for direct control of the stored value are provided. An authentication command has to be carried out before any memory operation in order to allow further commands. 9.6.2.1 Value Blocks The value blocks allow to perform electronic purse functions (valid commands: read, write, increment, decrement, restore, transfer).The value blocks have a fixed data format which permits error detection and correction and a backup management. A value block can only be generated through a write operation in the value block format:
* Value: Signifies a signed 4-byte value. The lowest significant byte of a value is stored
in the lowest address byte. Negative values are stored in standard 2s complement format. For reasons of data integrity and security, a value is stored three times, twice non-inverted and once inverted.
* Adr: Signifies a 1-byte address, which can be used to save the storage address of a
block, when implementing a powerful backup management. The address byte is stored four times, twice inverted and non-inverted. During increment, decrement, restore and transfer operations the address remains unchanged. It can only be altered via a write command.
Byte Number Description
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Value
Value
Value
Adr Adr Adr Adr
001aam205
Fig 8.
Value blocks
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
11 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
9.6.3 Sector trailer (block 3)
Each sector has a sector trailer containing the
* secret keys A and B (optional), which return logical "0"s when read and * the access conditions for the four blocks of that sector, which are stored in bytes 6...9.
The access bits also specify the type (read/write or value) of the data blocks. If key B is not needed, the last 6 bytes of block 3 can be used as data bytes. Byte 9 of the sector trailer is available for user data. For this byte the same access rights as for byte 6, 7 and 8 apply. All keys are set to FFFFFFFFFFFFh at chip delivery.
Byte Number Description
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Key A
Access Bits
Key B (optional)
001aam206
Fig 9.
Sector trailer
9.7 Memory access
Before any memory operation can be carried out, the card has to be selected and authenticated as described previously. The possible memory operations for an addressed block depend on the key used and the access conditions stored in the associated sector trailer.
Table 4. Operation Read Write Increment Memory operations Description reads one memory block writes one memory block increments the contents of a block and stores the result in the internal data register decrements the contents of a block and stores the result in the internal data register writes the contents of the internal data register to a block reads the contents of a block into the internal data register Valid for Block Type read/write, value and sector trailer read/write, value and sector trailer value
Decrement
value
Transfer Restore
value value
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
12 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
9.7.1 Access conditions
The access conditions for every data block and sector trailer are defined by 3 bits, which are stored non-inverted and inverted in the sector trailer of the specified sector. The access bits control the rights of memory access using the secret keys A and B. The access conditions may be altered, provided one knows the relevant key and the current access condition allows this operation. Remark: With each memory access the internal logic verifies the format of the access conditions. If it detects a format violation the whole sector is irreversible blocked. Remark: In the following description the access bits are mentioned in the non-inverted mode only. The internal logic of the MF1S5009 ensures that the commands are executed only after an authentication procedure or never.
Table 5. Access conditions Valid Commands read, write read, write, increment, decrement, transfer, restore read, write, increment, decrement, transfer, restore read, write, increment, decrement, transfer, restore Block 3 2 1 0 Description sector trailer data block data block data block
Access Bits C13 C23 C33 C12 C22 C32 C11 C21 C31 C10 C20 C30
Byte Number
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Key A
Access Bits
Key B (optional)
Bit 7 Byte 6 Byte 7 Byte 8 Byte 9 C23 C13 C33
6 C22 C12 C32
5 C21 C11 C31
4 C20 C10 C30
3 C13 C33 C23
2 C12 C32 C22
1 C11 C31 C21
0 C10 C30 C20
001aam207
Fig 10. Access conditions
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
13 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
9.7.2 Access conditions for the sector trailer
Depending on the access bits for the sector trailer (block 3) the read/write access to the keys and the access bits is specified as `never', `key A', `key B' or key A|B' (key A or key B). On chip delivery the access conditions for the sector trailers and key A are predefined as transport configuration. Since key B may be read in transport configuration, new cards must be authenticated with key A. Since the access bits themselves can also be blocked, special care should be taken during personalization of cards.
Table 6. Access conditions for the sector trailer Access condition for KEYA C1 0 0 1 1 0 0 1 1
[1]
Access bits C2 0 1 0 1 0 1 0 1 C3 0 0 0 0 1 1 1 1
Remark KEYB read key A key A never never key A never never never write key A never key B never key A key B never never Key B may be read, transport configuration[1] Key B may be read[1] Key B may be read[1] write never never never never key A key B key B never
Access bits write key A never key B never key A key B never never read key A key A key A|B key A|B key A key A|B key A|B key A|B
read never never never never never never never never
for this access condition key B is readable and may be used for data
9.7.3 Access conditions for data blocks
Depending on the access bits for data blocks (blocks 0...2) the read/write access is specified as `never', `key A', `key B' or `key A|B' (key A or key B). The setting of the relevant access bits defines the application and the corresponding applicable commands.
* Read/write block: The operations read and write are allowed. * Value block: Allows the additional value operations increment, decrement, transfer
and restore. In one case (`001') only read and decrement are possible for a non-rechargeable card. In the other case (`110') recharging is possible by using key B.
* Manufacturer block: The read-only condition is not affected by the access bits setting! * Key management: In transport configuration key A must be used for authentication
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
14 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
Access conditions for data blocks Access condition for read write increment decrement, transfer, restore key A|B1 never never key key A|B1 A|B1 transport configuration read/write block read/write block value block value block read/write block read/write block read/write block Application C3
Table 7. C1 C2
Access bits
0 0 1 1 0 0 1 1
[1]
0 1 0 1 0 1 0 1
0 0 0 0 1 1 1 1
key A|B[1] key A|B[1] key A|B[1] key key key A|B[1] A|B[1] B[1]
key A|B1 never key B1 key key B1 B1 never never never
key A|B1 never never key B1 never never never never
never never never
key B[1] never
if Key B may be read in the corresponding Sector Trailer it cannot serve for authentication (all grey marked lines in previous table). Consequences: If the reader tries to authenticate any block of a sector with key B using grey marked access conditions, the card will refuse any subsequent memory access after authentication.
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
15 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
10. Command overview
The MIFARE card activation follows the ISO/IEC 14443-3 type A. After the MIFARE card has been selected, it can either be deactivated using the ISO/IEC 14443 Halt command, or the MIFARE commands can be performed. For more details about the card activation refer to Ref. 4.
10.1 MIFARE command overview
All MIFARE Classic commands use the MIFARE Crypto1 and require an authentication. All available commands for the MIFARE Classic are shown in Table 8.
Table 8. Command Request Wake-up Anticollision CL1 Anticollision CL2 Select CL1 Select CL2 Halt Authentication with Key A Authentication with Key B MIFARE Read MIFARE Write MIFARE Decrement MIFARE Increment MIFARE Restore MIFARE Transfer Halt Command overview ISO/IEC 14443 REQA WUPA Anticollision CL1 Anticollision CL2 Select CL1 Select CL2 Halt Command code (hexadecimal) 26h (7 bit) 52h (7 bit) 93h 20h 95h 20h 93h 20h 95h 20h 50h 50h 60h 61h 30h A0h C0h C1h C2h B0h 50h 00h
All the commands use the coding and framing as described in Ref. 3 and Ref. 4 (e.g. parity) if not otherwise specified.
10.2 Timings
In this document the timing shown is not to scale and rounded to 1 s. All the given times refer to the data frames including start of communication and end of communication, but do not include the encoding (like the Miller pulses). Consequently a data frame sent by the PCD contains the start of communication (1 "start bit") and the end of communication (one logic 0 + 1 bit length of unmodulated carrier). A data frame sent by the PICC contains the start of communication (1 "start bit") and the end of communication (1 bit length of no subcarrier).
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
16 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
All timing can be measured according to ISO/IEC 14443-3 frame specification as shown for the Frame Delay Time in Figure 11. For more details refer to Ref. 3 and Ref. 4. FDTPCD2PICC = Frame delay time PCD to PICC. FDTPICC2PCD = Frame delay time PICC to PCD (must be at least 87 S).
Last data bit transmitted by PCD FDT = (n* 128 + 84)/fc
First modulation of PICC
128/fc logic ''1''
256/fc End of communication (E) FDT = (n* 128 + 20)/fc
128/fc Start of communication (S)
128/fc logic ''0''
256/fc End of communication (E)
128/fc Start of communication (S)
TACK, TNAK
001aam208
(1) Measurement of the FDT (Frame Delay Time) from PCD to PICC
Fig 11. Frame Delay Time (from PCD to PICC), and TACK and TNAK
Remark: Due to the coding of commands, the measured timings usually exclude (a part of) the end of communication. This needs to be considered, when comparing the given times with the measured ones.
10.3 MIFARE ACK and NAK
The MIFARE Classic uses a 4 bit ACK / NAK as shown in Table 9.
Table 9. Ah 0h to 9h Bh to Fh MIFARE ACK and NAK ACK/NAK Acknowledge (ACK) NAK NAK
Code (4-bit)
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
17 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
10.4 ATQA and SAK responses
For details on the type identification procedure please refer to Ref. 2. The MF1S5009 answers to a REQA or WUPA command with the ATQA value shown in Table 10 and to a Select CL1 command with the SAK value shown in Table 11.
Table 10. Response ATQA Table 11. Response SAK ATQA response of the MF1S5009 Bit Number Hex Value 00 44h 16 15 14 13 12 11 10 0 0 0 0 0 0 0 9 0 8 0 7 1 6 0 5 0 4 0 3 1 2 0 1 0
SAK response of the MF1S5009 Bit Number Hex Value 08h 8 0 7 0 6 0 5 0 4 1 3 0 2 0 1 0
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
18 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
11. MIFARE classic commands
11.1 MIFARE Authentication
The MIFARE authentication is a 3-pass mutual authentication which needs two pairs of command-response. These two parts, MIFARE authentication part 1 and part 2 are shown in Figure 12, Figure 13 and Table 12. Table 13 shows the required timing.
PCD PICC ,,ACK''
Auth
Addr
CRC Token RB
368 s
TACK
359 s
PICC ,,NAK'' TNAK
NAK 59 s
Time out
TTimeOut
001aam209
Fig 12. MIFARE Authentication part 1
PCD PICC ,,ACK''
Token AB Token BA 708 s TACK 359 s
PICC ,,NAK'' TNAK
NAK 59 s
Time out
TTimeOut
001aam210
Fig 13. MIFARE Authentication part 2
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
19 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
MIFARE authentication command Code 60h 61h see Table 9 Description Authentication with Key A Authentication with Key B MIFARE Block address (00h to FFh) CRC according to Ref. 4 Challenge 1 (Random Number) Challenge 2 (Random Number) Challenge 2 (Random Number) see Section 10.3 Length 1 byte 1 byte 1 byte 2 bytes 4 bytes 8 bytes 4 bytes 4-bit
Table 12. Name
Auth (with Key A) Auth (with Key B) Addr CRC Token RB Token AB Token BA NAK
Table 13. MIFARE authentication timing These times exclude the end of communication of the PCD. TACK min Authentication part 1 Authentication part 2 661 s 113 s TACK max TTimeOut TTimeOut TNAK min 661 s 113 s TNAK max TTimeOut TTimeOut TTimeOut 1 ms 1 ms
Remark: The minimum required time between MIFARE Authentication part 1 and part 2 is the minimum required FDT according to Ref. 4. There is no maximum specified. Remark: The MIFARE authentication and encryption requires an MIFARE reader IC (e.g. the CL RC632). For more details about the authentication command refer to the corresponding data sheet (e.g. Ref. 5).
11.2 MIFARE Read
The MIFARE Read requires a block address, and returns the 16 bytes of one MIFARE Classic block. The command structure is shown in Figure 14 and Table 14. Table 15 shows the required timing.
PCD PICC ,,ACK''
Cmd
Addr
CRC Data CRC 1548 s
368 s
TACK
PICC ,,NAK'' TNAK
NAK 59 s
Time out
TTimeOut
001aam211
Fig 14. MIFARE Read
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
20 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
MIFARE Read command Code 30h see Table 9 Description Read one block MIFARE Block address (00h to FFh) CRC according to Ref. 4 Data content of the addressed block see Section 10.3 Length 1 byte 1 byte 2 bytes 16 bytes 4-bit
Table 14. Name Cmd Addr CRC Data NAK
Table 15. MIFARE Read timing These times exclude the end of communication of the PCD. TACK min Read 71 s TACK max TTimeOut TNAK min 71 s TNAK max TTimeOut TTimeOut 5 ms
11.3 MIFARE Write
The MIFARE Write requires a block address, and writes 16 Bytes of data into the addressed MIFARE Classic 1K block. It needs two pairs of command-response. These two parts, MIFARE Write part 1 and part 2 are shown in Figure 15, Figure 16 and Table 16. Table 17 shows the required timing.
PCD PICC ,,ACK''
Cmd
Addr
CRC ACK
368 s
TACK
59 s
PICC ,,NAK'' TNAK
NAK 59 s
Time out
TTimeOut
001aam212
Fig 15. MIFARE Write part 1
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
21 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
PCD PICC ,,ACK''
Data
CRC ACK 1558 s TACK 59 s
PICC ,,NAK'' TNAK
NAK 59 s
Time out
TTimeOut
001aam213
Fig 16. MIFARE Write part 2 Table 16. Name Cmd Addr CRC Data NAK MIFARE Write command Code A0h see Table 9 Description Read one block MIFARE Block or Page address (00h to FFh) CRC according to Ref. 4 Data see Section 10.3 Length 1 byte 1 byte 2 bytes 16 bytes 4-bit
Table 17. MIFARE Write timing These times exclude the end of communication of the PCD. TACK min Write part 1 Write part 2 71 s 71 s TACK max TTimeOut TTimeOut TNAK min 71 s 71 s TNAK max TTimeOut TTimeOut TTimeOut 5 ms 10 ms
Remark: The minimum required time between MIFARE Write part 1 and part 2 is the minimum required FDT acc. to Ref. 4. There is no maximum specified.
11.4 MIFARE Increment, Decrement and Restore
The MIFARE Increment requires a source block address and an operand. It adds the operand to the value of the addressed block, and stores the result in a volatile memory. The MIFARE Decrement requires a source block address and an operand. It subtracts the operand from the value of the addressed block, and stores the result in a volatile memory. The MIFARE Restore requires a source block address. It copies the value of the addressed block into a volatile memory. These two parts of each command are shown in Figure 17, Figure 18 and Table 18. Table 19 shows the required timing.
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
22 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
PCD PICC ,,ACK''
Cmd
Addr
CRC ACK
368 s
TACK
59 s
PICC ,,NAK'' TNAK
NAK 59 s
Time out
TTimeOut
001aam214
Fig 17. MIFARE Increment, Decrement and Restore part 1
PCD PICC ,,ACK''
Data
CRC
538 s
PICC ,,NAK'' TNAK
NAK 59 s
Time out
TTimeOut
001aam215
(1) Increment, Decrement and Restore part 2 does not acknowledge
Fig 18. MIFARE Increment, Decrement and Restore part 2 Table 18. Name Cmd Cmd Cmd Addr CRC Data NAK MIFARE Increment, Decrement and Restore command Code C1h C0h C2h see Table 9 Description Increment Decrement Restore MIFARE source block address (00h to FFh) CRC according to Ref. 4 Operand (4 byte signed integer) see Section 10.3 Length 1 byte 1 byte 1 byte 1 byte 2 bytes 4 bytes 4-bit
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
23 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
Table 19. MIFARE Increment, Decrement and Restore timing These times exclude the end of communication of the PCD. TACK min Increment, Decrement, and Restore part 1 Increment, Decrement, and Restore part 2 71 s TACK max TTimeOut TNAK min 71 s TNAK max TTimeOut TTimeOut 5 ms
71 s
TTimeOut
71 s
TTimeOut
5 ms
Remark: The minimum required time between MIFARE Increment, Decrement, and Restore part 1 and part 2 is the minimum required FDT acc. too Ref. 4. There is no maximum specified. Remark: The MIFARE Increment, Decrement, and Restore commands require a MIFARE Transfer to store the value into a destination block. Remark: The MIFARE Increment, Decrement, and Restore command part 2 does not provide an acknowledgement, so the regular time out has to be used instead.
11.5 MIFARE Transfer
The MIFARE Transfer requires a destination block address, and writes the value stored in the volatile memory into one MIFARE Classic block. The command structure is shown in Figure 19 and Table 20. Table 21 shows the required timing.
PCD PICC ,,ACK''
Cmd
Addr
CRC ACK
368 s
TACK
59 s
PICC ,,NAK'' TNAK
NAK 59 s
Time out
TTimeOut
001aam216
Fig 19. MIFARE Transfer
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
24 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
MIFARE Transfer command Code B0h see Table 9 Description Write value into destination block MIFARE destination block address (00h to FFh) CRC according to Ref. 4 see Section 10.3 Length 1 byte 1 byte 2 bytes 4-bit
Table 20. Name Cmd Addr CRC NAK
Table 21. MIFARE Transfer timing These times exclude the end of communication of the PCD. TACK min Transfer 71 s TACK max TTimeOut TNAK min 71 s TNAK max TTimeOut TTimeOut 10 ms
12. Limiting values
Table 22. Limiting values [1][2] In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol II Ptot/pack Tstg Tamb VESD Ilu
[1] [2] [3]
Parameter input current total power dissipation per package storage temperature ambient temperature electrostatic discharge voltage latch-up current
[3]
Min -55 -25 2 100
Max 30 200 +125 +70 -
Unit mA mW C C kV mA
Stresses above one or more of the limiting values may cause permanent damage to the device Exposure to limiting values for extended periods may affect device reliability MIL Standard 883-C method 3015; Human body model: C = 100 pF, R = 1.5 k
13. Characteristics
Table 23. Symbol Ci fi tret Nendu(W)
[1] [2] [3]
Characteristics [1][2] Parameter input capacitance input frequency retention time write endurance Tamb = 22 C Tamb = 22 C Conditions
[3]
Min 15.0 10 100000
Typ 17.0 13.56 200000
Max 19.0 -
Unit pF MHz year cycle
EEPROM characteristics
Stresses above one or more of the values may cause permanent damage to the device. Exposure to limiting values for extended periods may affect device reliability. LCR meter, Tamb = 22 C, fi = 13.56 MHz, 2.8 V RMS.
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
25 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
14. Package outline
PLLMC: plastic leadless module carrier package; 35 mm wide tape SOT500-2
X D
A
detail X 0 10 scale DIMENSIONS (mm are the original dimensions) UNIT mm A (1) max. 0.33 D For unspecified dimensions see PLLMC-drawing given in the subpackage code. 35.05 34.95 20 mm
Note 1. Total package thickness, exclusive punching burr. OUTLINE VERSION SOT500-2 REFERENCES IEC --JEDEC --JEITA --EUROPEAN PROJECTION ISSUE DATE 03-09-17 06-05-22
Fig 20. Package outline SOT500-2
MF1S5009 All information provided in this document is subject to legal disclaimers. (c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
26 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
15. Abbreviations
Table 24. Acronym ATQA CRC EEPROM FFC IC LCR LSB NAK NUID NV PCD PICC REQA RF RMS SAK SECS-II TiW UID WUPA Abbreviations and symbols Description
Answer To reQuest, Type A
Cyclic Redundancy Check Electrically Erasable Programmable Read-Only Memory Film Frame Carrier Integrated Circuit L = inductance, Capacitance, Resistance (LCR meter)
Least Significant Bit
Not AcKnowledge Non-Unique IDentifier Non-Volatile memory Proximity Coupling Device (Contactless Reader) Proximity Integrated Circuit Card (Contactless Card)
REQuest command, Type A
Radio Frequency Root Mean Square Select AcKnowledge, type A SEMI Equipment Communications Standard part 2 Titanium Tungsten Unique IDentifier Wake-Up Protocol type A
16. References
[1] [2] [3] [4] [5] [6] MIFARE (Card) Coil Design Guide -- Application note, BU-ID Document number 0117**1 MIFARE Type Identification Procedure -- Application note, BU-ID Document number 0184** ISO/IEC 14443-2 -- 2001 ISO/IEC 14443-3 -- 2001 MIFARE & I-Code CL RC632 Multiple protocol contactless reader IC -- Product data sheet MIFARE and handling of UIDs -- Application note, BU-ID Document number 1907**
1.
** ... document version number
All information provided in this document is subject to legal disclaimers. (c) NXP B.V. 2010. All rights reserved.
MF1S5009
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
27 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
17. Revision history
Table 25. Revision history Release date 20100727 Data sheet status Product data sheet Product data sheet Change notice Supersedes MF1S5009 v.3.0 Document ID MF1S5009 v.3.1 Modifications: MF1S5009 v.3.0
*
All drawings updated
20100610
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
28 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
18. Legal information
18.1 Data sheet status
Document status[1][2] Objective [short] data sheet Preliminary [short] data sheet Product [short] data sheet
[1] [2] [3]
Product status[3] Development Qualification Production
Definition This document contains data from the objective specification for product development. This document contains data from the preliminary specification. This document contains the product specification.
Please consult the most recently issued document before initiating or completing a design. The term `short data sheet' is explained in section "Definitions". The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.
18.2 Definitions
Draft -- The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet -- A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification -- The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.
malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. Applications -- Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect. Limiting values -- Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale -- NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license -- Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Export control -- This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.
(c) NXP B.V. 2010. All rights reserved.
18.3 Disclaimers
Limited warranty and liability -- Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes -- NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use -- NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or
MF1S5009
All information provided in this document is subject to legal disclaimers.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
29 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.
Non-automotive qualified products -- Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's
18.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. MIFARE -- is a trademark of NXP B.V.
19. Contact information
For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
30 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
20. Tables
Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Ordering information . . . . . . . . . . . . . . . . . . . . .3 Bonding pad assignments to smart card contactless module . . . . . . . . . . . . . . . . . . . . . . .4 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Memory operations . . . . . . . . . . . . . . . . . . . . . .12 Access conditions . . . . . . . . . . . . . . . . . . . . . . .13 Access conditions for the sector trailer . . . . . .14 Access conditions for data blocks. . . . . . . . . . .15 Command overview . . . . . . . . . . . . . . . . . . . . .16 MIFARE ACK and NAK . . . . . . . . . . . . . . . . . .17 ATQA response of the MF1S5009 . . . . . . . . . .18 SAK response of the MF1S5009 . . . . . . . . . . .18 MIFARE authentication command . . . . . . . . . .20 MIFARE authentication timing . . . . . . . . . . . . .20 Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. MIFARE Read command . . . . . . . . . . . . . . . . . 21 MIFARE Read timing . . . . . . . . . . . . . . . . . . . . 21 MIFARE Write command . . . . . . . . . . . . . . . . . 22 MIFARE Write timing . . . . . . . . . . . . . . . . . . . . 22 MIFARE Increment, Decrement and Restore command . . . . . . . . . . . . . . . . . . . . . . 23 MIFARE Increment, Decrement and Restore timing . . . . . . . . . . . . . . . . . . . . . . . . . 24 MIFARE Transfer command. . . . . . . . . . . . . . . 25 MIFARE Transfer timing. . . . . . . . . . . . . . . . . . 25 Limiting values [1][2] . . . . . . . . . . . . . . . . . . . . . 25 Characteristics [1][2] . . . . . . . . . . . . . . . . . . . . . 25 Abbreviations and symbols . . . . . . . . . . . . . . . 27 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 28
21. Figures
Fig 1. Fig 2. Fig 3. Fig 4. Fig 5. Fig 6. Fig 7. Fig 8. Fig 9. Fig 10. Fig 11. Fig 12. Fig 13. Fig 14. Fig 15. Fig 16. Fig 17. Fig 18. Fig 19. Fig 20. MIFARE card reader . . . . . . . . . . . . . . . . . . . . . . .1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Contact assignments for SOT500-2 (MOA4) . . . .4 Chip orientation and bond pad locations . . . . . . . .6 Three pass authentication . . . . . . . . . . . . . . . . . . .8 Memory organization . . . . . . . . . . . . . . . . . . . . . .10 Manufacturer block . . . . . . . . . . . . . . . . . . . . . . . 11 Value blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Sector trailer . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Access conditions . . . . . . . . . . . . . . . . . . . . . . . .13 Frame Delay Time (from PCD to PICC), and TACK and TNAK. . . . . . . . . . . . . . . . . . . . . . . .17 MIFARE Authentication part 1 . . . . . . . . . . . . . . .19 MIFARE Authentication part 2 . . . . . . . . . . . . . . .19 MIFARE Read . . . . . . . . . . . . . . . . . . . . . . . . . . .20 MIFARE Write part 1 . . . . . . . . . . . . . . . . . . . . . .21 MIFARE Write part 2 . . . . . . . . . . . . . . . . . . . . . .22 MIFARE Increment, Decrement and Restore part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 MIFARE Increment, Decrement and Restore part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 MIFARE Transfer . . . . . . . . . . . . . . . . . . . . . . . . .24 Package outline SOT500-2 . . . . . . . . . . . . . . . . .26
MF1S5009
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet PUBLIC
Rev. 3 -- 27 July 2010 189131
31 of 32
NXP Semiconductors
MF1S5009
Mainstream contactless smart card IC
22. Contents
1 1.1 1.2 1.3 1.4 1.5 2 2.1 2.2 3 4 5 6 6.1 7 7.1 8 9 9.1 9.2 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5 9.3 9.4 9.5 9.6 9.6.1 9.6.2 9.6.2.1 9.6.3 9.7 9.7.1 9.7.2 9.7.3 10 10.1 10.2 10.3 10.4 11 11.1 11.2 11.3 General description . . . . . . . . . . . . . . . . . . . . . . 1 Key applications . . . . . . . . . . . . . . . . . . . . . . . . 1 Anticollision. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simple integration and user convenience. . . . . 1 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Delivery options . . . . . . . . . . . . . . . . . . . . . . . . 2 Features and benefits . . . . . . . . . . . . . . . . . . . . 2 MIFARE RF Interface (ISO/IEC 14443 A) . . . . 2 EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Ordering information . . . . . . . . . . . . . . . . . . . . . 3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pinning information . . . . . . . . . . . . . . . . . . . . . . 4 Smart card contactless module . . . . . . . . . . . . 4 Mechanical specification . . . . . . . . . . . . . . . . . 4 Fail die identification . . . . . . . . . . . . . . . . . . . . . 5 Chip orientation and bond pad locations . . . . 6 Functional description . . . . . . . . . . . . . . . . . . . 7 Block description . . . . . . . . . . . . . . . . . . . . . . . 7 Communication principle . . . . . . . . . . . . . . . . . 7 Request standard / all. . . . . . . . . . . . . . . . . . . . 7 Anticollision loop . . . . . . . . . . . . . . . . . . . . . . . . 7 Select card . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Three pass authentication . . . . . . . . . . . . . . . . 8 Memory operations . . . . . . . . . . . . . . . . . . . . . . 9 Data integrity. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Three pass authentication sequence . . . . . . . . 9 RF interface . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Memory organization . . . . . . . . . . . . . . . . . . . 10 Manufacturer block . . . . . . . . . . . . . . . . . . . . . 11 Data blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Value Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Sector trailer (block 3) . . . . . . . . . . . . . . . . . . 12 Memory access . . . . . . . . . . . . . . . . . . . . . . . 12 Access conditions . . . . . . . . . . . . . . . . . . . . . . 13 Access conditions for the sector trailer . . . . . . 14 Access conditions for data blocks. . . . . . . . . . 14 Command overview . . . . . . . . . . . . . . . . . . . . . 16 MIFARE command overview . . . . . . . . . . . . . 16 Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 MIFARE ACK and NAK . . . . . . . . . . . . . . . . . 17 ATQA and SAK responses . . . . . . . . . . . . . . . 18 MIFARE classic commands . . . . . . . . . . . . . . 19 MIFARE Authentication . . . . . . . . . . . . . . . . . 19 MIFARE Read. . . . . . . . . . . . . . . . . . . . . . . . . 20 MIFARE Write . . . . . . . . . . . . . . . . . . . . . . . . . 21 11.4 11.5 12 13 14 15 16 17 18 18.1 18.2 18.3 18.4 19 20 21 22 MIFARE Increment, Decrement and Restore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIFARE Transfer . . . . . . . . . . . . . . . . . . . . . . Limiting values . . . . . . . . . . . . . . . . . . . . . . . . Characteristics . . . . . . . . . . . . . . . . . . . . . . . . Package outline. . . . . . . . . . . . . . . . . . . . . . . . Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision history . . . . . . . . . . . . . . . . . . . . . . . Legal information . . . . . . . . . . . . . . . . . . . . . . Data sheet status . . . . . . . . . . . . . . . . . . . . . . Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . Contact information . . . . . . . . . . . . . . . . . . . . Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 24 25 25 26 27 27 28 29 29 29 29 30 30 31 31 32
Please be aware that important notices concerning this document and the product(s) described herein, have been included in section `Legal information'.
(c) NXP B.V. 2010.
All rights reserved.
For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 27 July 2010 189131


▲Up To Search▲   

 
Price & Availability of MF1S5009DUD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X